What’s the Cheapest Grocery Store for Breakfast Items?

Introduction 

This project is the statistic project on Randomize design, ANOVA and paired t test. For this project I have collected Breakfast Product price as a data from the three stores. They are Family Fare, Hornbachers and Wallmart.

Completely Randomize Design and Dunnett’s Comparison: 

In this part we have analyzed a data using completely randomize design. This is use to test whether the mean prices of product I have selected from three stores is same of difference. Besides this I have used Dunnett’s comparison using Family Fare as the base store for comparison. This compare the mean prices of other two stores with the price of Family Fare. Output from the Minitab is shown in section Result from Minitab and I will discuss about the result in section Finding and Discussion. 

Result from Minitab: 

One-way ANOVA: Family fare, Hornbachers, Wallmart 

Method 

Null hypothesis   All means are equal  
Alternative hypothesis   Not all means are equal  
Significance level   α = 0.05  

Equal variances were assumed for the analysis. 

Factor Information 

Factor   Levels   Values  
Factor   3   Family fare, Hornbachers, Wallmart 

Analysis of Variance 

Source   DF   Adj SS   Adj MS   F-Value   P-Value  
Factor   2   12.34   6.171   2.84   0.066  
Error   63   136.81   2.172            
Total   65   149.15                 

Model Summary 

S   R-sq  R-sq(adj)   R-sq(pred)  
1.47364   8.27%   5.36%   0.00%  

Means 

Factor   N   Mean   StDev  95% CI  
Family fare   22   4.381   1.418   (3.753, 5.009)  
Hornbachers  22   4.447   1.730   (3.819, 5.075)  
Wallmart  22   3.498   1.230   (2.871, 4.126)  

Pooled StDev = 1.47364 

Dunnett Multiple Comparisons with a Control 

Grouping Information Using the Dunnett Method and 95% Confidence 

Factor   N   Mean   Grouping  
Family fare (control)   22   4.381   A  
Hornbachers  22   4.447   A  
Wallmart  22   3.498   A  

Means not labeled with the letter A are significantly different from the control level mean. 

Dunnett Simultaneous 95% CIs 

Interval Plot of Family fare, Hornbachers, … 

 

 

Finding and Discussion: 

In this part we have used breakfast mean price data from all three stores. We have set Null Hypothesis as all mean are equal vs Alternate Hypothesis as all mean price are not equal. Significance level value alpha is set to 0.05. Then from Minitab we get F-value equal to 2.84 and p-value 0.066. Which means p-value is greater than that of alpha which means “Don’t reject Null Hypothesis”. Which also tells that the differences between the means are not statistically significant.

Furthermore, we have used Dunnett’s comparison in Minitab. For this we have used Family fare as the base store for the comparison and compare the mean price of Hornbachers and Walmart. We have got mean price value of 4.381, 4.447 and 3.498 for Family Fare, Hornbachers and Walmart respectively.  Both the Family fare – Hornbachers and Family Fare – Walmart interval contain zero which means corresponding mean(Hornbachers and Walmart mean) is not significantly different from the control mean(Family Fare). Last figure shows the interval plot for all three stores.

Stat-ANOVA-Balanced ANOVA: 

The second type of design is randomized complete block design. This test whether the mean prices are the same between the stores. Result from Minitab and findings is in section below. For this experiment Store Number 1 is for Family Fare, 2 is for Hornbachers and 3 is for Walmart. Similarly, digit 1 to 22 item number is given to 22 different breakfast items. 

Result from Minitab: 

ANOVA: Price versus Store Number, Item Number 

Factor Information 

Factor   Type   Levels   Values  
Store Number   Fixed   3   1, 2, 3  
Item Number   Fixed   22   1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20, 21, 22  

Analysis of Variance for Price 

Source   DF   SS   MS   F   P  
  Store Number   2   12.341   6.1707   27.60   0.000  
  Item Number   21   127.422   6.0677   27.14   0.000  
Error   42   9.390   0.2236            
Total   65   149.153                 

Model Summary 

S   R-sq  R-sq(adj)  
0.472821   93.70%   90.26%  

 

Finding and Discussion: 

In this experimental design we have used Store number and Item number as treatment and block. We get F-value of 27.60 and 27.14 respectively for Store number and block number. In this testing we  define Null hypothesis as all treatments mean are equal. In contrast we define alternate hypothesis as: “at least two treatment means differ for treatment”.From the minitab, we get F-value of 27.60 and p value 0 for treatment. This rejects Null hypothesis and accept an alternate hypothesis. This conclude At least two treatment means (mean price for two store) are different

And furthermore, for block design we define Null and Alternate Hypothesis respetively. Null hypothesis is define as ” all block mean are equal”.  Whereas alternate hypothesis is define as ” at least two block mean are different”.Similarly, for the block design also we get F-value as 27.14 and p-value as 0 which also conclude at least two block means are different.

Two sample t-test and Paired t-test: 

Third and final test is two sample t test and paired t test. I have used data from two stores to compare the mean between the prices. They are Family Fare and Hornbachers. This test whether the mean price at two store are same or different. I will discuss the Minitab output in section below. 

Result from Minitab: 

When Equal Variance are Assumed 

Two-Sample T-Test and CI: Family fare, Hornbachers 

Method 

μ₁: mean of Family fare  
µ₂: mean of Hornbachers 
Difference: μ₁ – µ₂  

Equal variances are assumed for this analysis. 

Descriptive Statistics 

Sample   N   Mean   StDev  SE Mean  
Family fare   22   4.38   1.42   0.30  
Hornbachers  22   4.45   1.73   0.37  

Estimation for Difference 

Difference   Pooled 
StDev 
95% CI for 
Difference  
-0.066   1.581   (-1.028, 0.896)  

Test 

Null hypothesis   H₀: μ₁ – µ₂ = 0  
Alternative hypothesis   H₁: μ₁ – µ₂ ≠ 0  
T-Value   DF   P-Value  
-0.14   42   0.890  

  

When Equal Variance are not Assumed 

Two-Sample T-Test and CI: Family fare, Hornbachers 

Method 

μ₁: mean of Family fare  
µ₂: mean of Hornbachers 
Difference: μ₁ – µ₂  

Equal variances are not assumed for this analysis. 

Descriptive Statistics 

Sample   N   Mean   StDev  SE Mean  
Family fare   22   4.38   1.42   0.30  
Hornbachers  22   4.45   1.73   0.37  

Estimation for Difference 

Difference   95% CI for 
Difference  
-0.066   (-1.030, 0.898)  

Test 

Null hypothesis   H₀: μ₁ – µ₂ = 0  
Alternative hypothesis   H₁: μ₁ – µ₂ ≠ 0  
T-Value   DF   P-Value  
-0.14   40  
  1.  

 

  1. Paired t test 

 Paired T-Test and CI: Family fare, Hornbachers 

Descriptive Statistics 

Sample   N   Mean   StDev  SE Mean  
Family fare   22   4.381   1.418   0.302  
Hornbachers  22   4.447   1.730   0.369  

Estimation for Paired Difference 

Mean   StDev  SE Mean   95% CI for 
μ_difference 
-0.066   0.476   0.101   (-0.277, 0.145)  

µ_difference: mean of (Family fare - Hornbachers) 

Test 

Null hypothesis   H₀: μ_difference = 0  
Alternative hypothesis   H₁: μ_difference ≠ 0  
T-Value   P-Value  
-0.65   0.522  

 

Finding and Discussion: 

In this section we have compared the mean price of two stores using two sample t test (assume equal variance) and paired t-test. We have used mean prices for Family fare and Hornbachers. We have tested Null hypothesis as mean price is equal for two store vs mean prices are different as alternate hypothesis. Here we get p-value of 0.89 which is greater than alpha value (0.05) which doesn’t reject null hypothesis. Which means mean price for two stores are same and confidence interval also shows difference in mean can be equal to zero. Whereas using paired t -test, we tested mean difference equal to zero vs mean difference not equal to zero. Here we get p-value of 0.522 which means accept null hypothesis and mean difference is equal to zero. So result from both two sample t test and paired t test are same. 

Data: 

Item Number   Item Name  Size  Family fare price  Hornbachers  Walmart 
1  Kellog choclate frosted flakes  13.7 oz  4.69  4.49  4.39 
2  kellog frosted mini wheels blue  24.3 oz  4.19  4.19  3.88 
3  kellog raisin bran crunch  15.9 oz  4.49  4.09  2.53 
4  Kellog special K Red berrries  16.9 oz  4.99  5.99  3.88 
5  General mills Reesers puffs  11.5 oz  3.89  3.99  2.98 
6  kellog’s corn flakes  18 oz  4.99  4.49  3.17 
7  capin cruch (sweeted corn oat cereal)  20 oz  5.29  4.99  4.74 
8  quaker oats quick  42 oz  4.69  4.59  4.93 
9  natural valley cruncy granula bars  8.94 oz  3.39  3.79  2.89 
10  kellos fruit cracker hot wheels  oz  2.99  2.99  1.99 
11  Aunt jemina original pancake mix  32 oz  3.09  2.99  1.92 
12  Aunt jemina original syrup  24 oz  4.19  4.29  2.73 
13  Hershy syrup  24 oz  2.59  2.59  2.28 
14  coffe-mate nazelnut  16 oz  2.99  2.245  2.79 
15  Folgers house blend  10.3 oz  4.29  4.39  3.396 
16  betty crocker muffin chcoclate chip  14.75 oz  2.79  2.99  2.38 
17  welchs juice 100% grape  64 oz  4.99  4.89  3.84 
18  ocean spray cranberry 100%  60 oz  4.39  4.39  3.12 
19  ocean spary grape fruit juice ruby red  64 oz  3.49  3.49  2.98 
20  planters deluxe mixed nuts  8.75 oz  7.49  7.99  5.53 
21  blue diamond roasted salted almonds   16 oz  8.49  9.99  6.98 
22  cherrios cereal blueberry  10,9 oz  3.99  3.99  3.64 

 

About sgc908

Graduate Research Assistant at North Dakota State University, Precision Agriculture, Machine Learning, Deep Learning and Big Data.

View all posts by sgc908 →